Synergia Update October 2009

James Amundson and Alexandru Macridin

Fermilab

ComPASS Collaboration Meeting, October 6, 2009

Outline

- Recent Synergia developments
- 2 Applications
- 3 Development plans

Recent Synergia developments

- Physics: resistive wall impedance
 - See Alex Macridin's slides. . .
- Infrastructure: porting/portability
 - Synergia2 ported to BG/P (Argonne's Intrepid)
 - Scaling to 2048 processors
 - Build still an expert-level process (but not for long...)
 - Contractor updated
 - Installed packages now auto-detectable
 - Advanced options allow (nearly) arbitrary end-user command modifications

Synergia scaling study performed at ALCF with 200 million particles with space charge calculated on a $64 \times 64 \times 1024$ grid

Contractor update

Synergia build instructions (non-cross compiling platforms)

./contract.py

- Installed packages are auto-detected
- Build can be stopped and restarted
- Zero buy-in: packages themselves not modified

Synergia build instructions for BlueGene/P (soon!)

- ./contract.py --configure-import bgp.txt
- ./contract.py

Applications

BeamBeam3d

- Paper Fully 3D multiple beam dynamics processes simulation for the Fermilab Tevatron submitted to Physical Review ST-AB
- No new BeamBeam3d simulations planned

Synergia

- Mu2e
 - Simulations of resonant extraction from Debuncher including space charge
 - Program well underway; some results shown at ICAP09
 - Space charge is probably a limiting factor for this experiment
- Project X
 - Simulations of space charge effects in the Main Injector
 - Program just started
 - Resistive wall and multi-bunch effects after space charge
 - Will be comparing against IMPACT simulations

Mu2e

Highlight from Mu2e simulations

- Tune footprint (colors) and losses (points)
- Resonance lines included up to seventh order

Fermilab Main Injector (Project X)

Development goals

Public release of Synergia

- Project server http://compacc.fnal.gov/projects
 - Redmine, which is currently spreading throughout Fermilab
- Interface cleanup
- Documentation
 - Using Sphinx (Python) and Doxygen (C++) via Breathe

Scalability to 10⁴+ processors

- Massively parallel multi-bunches
 - Main Injector has 588 buckets
 - INCITE proposal
- Algorithmic advances for massively parallel space charge
 - See Alex Macridin's slides
 - Also part of INCITE proposal

Development details

- Interface cleanup
 - Prefer pure C++ and pure Python modules
 - Unit tests
 - Boost::Test (C++) and Nose (Python)
 - Inline documentation
 - ..as an automatically included part of hand-written documentation
 - Bunch- and solver-specific communicators
 - Necessary for massively parallel bunches
 - Standardize on Boost::MultiArray
- CHEF improvements
 - In-progress code review of CHEF
 - Expert review team includes member of the C++ Standards Committee
 - Results expected soon
 - Implementation of recommendations to follow

Discussion question

Have you benchmarked GNU compilers vs. IBM compilers for your code on BG/P?

My tests showed IBM losing big in some cases, winning small in others. In all cases, compiling with IBM takes *several times* as long as compiling with GNU. I was not compelled to try to get all dependent packages compiling with IBM compilers.

